This section contain company information,

geographical coverage in supplies and useful links

Information

О компании

Основная информация, история релиза продукции, решенные задачи, миссия компании

SiberGeo – осуществляет лицензионное производство геофизического оборудования, разработанного совместно со специалистами Российской академии наук и Томского университета. Компания реализует продукцию методов электроразведки, индукционного профилирования и георадиолокации; осуществляет внедрение методов электроразведки в различные сферы народного хозяйства, а также обеспечивает информационную, методическую и сервисную поддержку по продукции.

Также компания осуществляет научно-исследовательскую деятельность в области геофизики, производит работы с применением различных методов электроразведки, а также проводит комплекс мероприятий, направленных на усовершенствование продукции.

Компания предлагает комплексные геолого-геофизические сервисные услуги, включая бурение, лабораторные и полевые исследования.

Организуя поставку высокотехнологичного оборудования – нашей компанией проводится предварительный анализ сферы применения; первичная консультация о возможных вариантах реализации, поставленной клиентом задачи; обучение работе с оборудованием; осуществляется гарантийное и послегарантийное обслуживание.

Наша цель – развитие долгосрочных взаимовыгодных отношений с партнерами и клиентами. Предоставление профессиональной информационной и технической поддержки. Участие в приоритетных направлениях развития научно-технологического комплекса России.

История реализации продукции
    Multi-frequency electromagnetic induction profilers

    The first prototype of the EM-I profiler with 14 frequencies was assembled in 1996 (EMS#0), but because of the then crisis situation in the country, the intention to introduce and mass-produce electromagnetic scanners were left until better times. In 2001, in the laboratory of electromagnetic fields of the Institute of Petroleum Geology and Geophysics. A.A. Trofimuka SB RAS (IPGG SB RAS) a second prototype device (EMS#1) was assembled, from which the development of production and testing of the methodology began.

    In 2008 was commercial release of multi-frequency electromagnetic induction profiler “NEMFIS” (EMS#05). The experience of using frequency sounding with the “NEMFIS” hardware-software complex shows that a methodological approach to the study of subsurface space to a depth of a few meters on the basis of high-quality signal reconstructions is informative and cost-effective. A comparative analysis of this technique with existing foreign technologies based on the induction methods has revealed a number of significant advantages, such as noise reduction, high resolution and sensitivity.

    At 2012 – was released first “AEMP-14” (EMS#20) with completely new electronic plates and cover.
    Unique properties of the device:
    – the ability to obtain information in the form of geoelectric maps and profiles of the apparent resistivity values in real time on Android or Windows mobile;
    – applicability in high level of electromagnetic interference conditions;
    – performance in conditions of extremely low ground resistance.

    First compact profiler “Geovizer” was released in 2014, it implements the induction multi-frequency sounding method, and allows contactless measuring of the underground situation. As a result of measuring, it is possible to obtain the spatial level distribution of the secondary field signal from the ground till 3 meters depth. Three-frequency EM-I profiler “Geovizer” allows profiling on any set of 3 fixed frequencies in the 12.5 – 111 kHz range, including the measuring with global coordinates automatic associating.

    Multi-electrode electrical resistivity & induced polarization imaging instruments

    In 2009 the core staff of the company LLC “KB Electrometry” in cooperate with the Institute of Petroleum Geology and Geophysics A.A. Trofimuka SB RAS (IPGG SB RAS) developed the “SibER 48” – multi-electrode instrument, which was designed to perform electrical exploration using resistivity and induced polarization methods with the measuring modes of electrical profiling, vertical electrical sounding, and electrical tomography. There is a switch for electromechanical relays, a generator and a selective millivoltmeter in the case. For long profiles, the “roll-up” mode is implemented with the transfer of the first segment of the multi-electrode cable of the previous arrangement to the place of the second in the next one. SibER 48 has built-in software that allows you to:
    – program switching to work with 2D tomography;
    – ensure the safety of data during power failures;
    – disconnect any electrodes;
    – provide flexible control of equipment.

    Subsequently in 2014 there was developed 16x channels and 64-electrode instrument for electrical resistivity & induced polarization imaging “SibER 64”. The core of the hardware is an integrated processor unit with Linux OS. Control of the unit organises by 10 inches touch screen, which allows operator to perform all operator work without using a personal computer. Synchronization with an external PC is carried out using a standard USB cable. The internal source generator of a bipolar pulses sequence has 200W power. There is also possibility of using an external generator 1KW+. Thanks to the high-performance processor, touch screen and advanced interface, the equipment layout allows interactively programming measurement protocols, viewing, monitoring and preliminary processing of the measured data.

    In 2017, KB Electrometry presented last developments – the Geovizer induction profiler and 48-electrodes 15x measuring channels electrical resistivity & induced polarization imaging instruments SibER 48K12.

    In 2019, KB Electrometry brought to the market a new model 64-electrodes 15x measuring channels electrical resistivity & induced polarization imaging instruments SibER 64K15 with the ability to synchronise with an external source VP-1000M.

    In January 2020, the company introduced a new version of the Xeres control software, now in the 4th version the user sets the operating voltage, indeed the current. This eliminates the occurrence of emergency situations because of a high ground resistance difference on electrodes. The logging measurement functionality and a new diagnostic module for conducting operational tests of internal nodes of the system are also added.

    Multi-array ground radio imaging system

    The concept of a hardware-software complex for 3D radio imaging was approved in 2006. Since 2012, the development of the multi-array ground radio imaging system “GRT-XX” (GeoRadioTomograph) has been carried out jointly with a group of specialists from the Siberian Physical-Technical Institute (TSU), programmers and specialized engineers.
    In 2015, the first prototype of a 16-channel chirp signal generator that work in the 500 MHz – 2000 MHz range was created, which allows multi-angle sounding with trace digitization at 256 samples.

    In April 2017 the prototype of a 32-channel generator with pre-processing on board and data transmission via Fast Ethernet (100 Mbit/s) protocol was presented.

    In March 2018, at the “Georadar-2018” conference, as part of a field demonstration, a working set of GRT-23 equipment (24 antenna elements; scanning width ~ 2m) installed at the road laboratory was shown. Thanks to the integrated module based on FPGU controllers – the data processing speed was significantly increased – data collection and processing from the entire line at a measurement density of 10 cm was carried out at the speed up to 45 km/h (up to 80 km/h if using 6 measurement channels) with digitization of a trace signal on 512 samples.

    In August 2018, a new version of the device was released, with an improved protocol for transmitting data via Gigabit Ethernet, providing digitization of the trace signal at 1024 samples and data collection at speeds up to 80+ km/h with a measurement density of 5 cm when using 32 antenna elements.

    In July 2019, a new version of the hardware generator firmware was released, which additionally provided switching options for the measurement mode using the common midpoint method (CMP).

    In August 2019, the integration of the .trz format into the GeoReader software package was completed. The results of the data processing obtained during the GPRs testing at the GC Avtodor test field in the summer of 2019, organised by the RosdorNII, demonstrate the high efficiency of the operation of software algorithms for calculating the depth section according to GOST R 58349-2019.

    In January 2020, it was possible to significantly improve the quality of data due to the refinement of the antenna modules, as well as the introduction of the primary calibration technique and compensation of the hardware function.

    In 2020, the company announces a new model of high frequency radio imaging system – GRT-81, designed to get three-dimensional radio images with a resolution of 15×15 mm according to plan and <2 mm in depth, in particular, to measure the thickness of the upper layer of the road surface with high accuracy, as well as to build the function of changing the relative density of the investigated environment.

  • 2002

     

    ЭМС#1

    Первый предсерийный вариант 14-частотного электромагнитного индукционного профайлера EMS#1

  • 2008

     

    Немфис

    Начало серийного производства аппаратуры электромагнитного индукционного профилирования NEMFIS (EMS#05)

  • 2010

     

    Скала 48 (SibER 48)

    Начало серийного выпуска электроразведочной аппаратуры для работ методом сопротивлений и вызванной поляризации “Скала 48”

  • 2012

     

    АЭМП-14

    Начало серийного производства аппаратуры электромагнитного индукционного профилирования AEMP-14 (EMS#20)

  • 2013

     

    Скала 64 (SibER 64)

    Начало серийного выпуска 64-x электродной, 16-ти канальной электроразведочной аппаратуры для работ методом сопротивлений и вызванной поляризации “Скала 64”

  • 2014

     

    Геовизер

    Первый прототип компактной трех частотной аппаратуры электромагнитного индукционного профилирования “Геовизер”

  • 2015

     

    ГРТ-2

    Первый прототип аппаратуры многоракурсной георадиолокации ГРТ-2

  • 2017

     

    АЭМП-14 HW:04

    Обновление схемотехники и элементов корпуса аппаратуры АЭМП-14, существенные оптимизации технологических процессов на производстве, повышение эффективности контроля качества выпускаемой продукции.

    AEMP-14 ara Nemfis

  • 2017

     

    Скала 48К12 (SibER 48K12)

    Начало серийного производства 48-ми электродной, 12-ти канальной электроразведочной аппаратуры для работ методом сопротивлений и вызванной поляризации “Скала48К12” (SibER 48K12).

  • 2018

     

    Геовизер 4.5

    Начало серийного производства компактной аппаратуры электромагнитного индукционного профилирования “Геовизер” (Geovizer)

  • 2017

     

    ГРТ-XX

    Начало серийного производства аппаратуры многоракурсной георадиолокации (георадиотомограф) ГРТ-2X

  • 2019

     

    Скала 64К15 (SibER 64K15)

    Начало серийного производства 64-х электродной, 15-ти канальной электроразведочной аппаратуры для работ методом сопротивлений и вызванной поляризации “Скала64К15” (SibER 64K15).

  • 2020

     

    ГРТ-81

    Первый прототип компактной аппаратуры многоракурсной георадиолокации высокого разрешения ГРТ-81

  • 2020

     

    Скала 32К4 (SibER 32K4)

    Начало серийного производства 32-х электродной, 4-х канальной электроразведочной аппаратуры для работ методом сопротивлений и вызванной поляризации “Скала32К4” (SibER 32K4).

Где купить

Региональные дистрибьютеры, дилеры и торговые представители.

Полезные ссылки

Ссылки на сайты наших партнеров информационные ресурсы и специализированные общественные группы.

Call Now Button

Multi-frequency electromagnetic induction profilers

The first prototype of the EM-I profiler with 14 frequencies was assembled in 1996 (EMS#0), but because of the then crisis situation in the country, the intention to introduce and mass-produce electromagnetic scanners were left until better times. In 2001, in the laboratory of electromagnetic fields of the Institute of Petroleum Geology and Geophysics. A.A. Trofimuka SB RAS (IPGG SB RAS) a second prototype device (EMS#1) was assembled, from which the development of production and testing of the methodology began.

In 2008 was commercial release of multi-frequency electromagnetic induction profiler "NEMFIS" (EMS#05). The experience of using frequency sounding with the "NEMFIS" hardware-software complex shows that a methodological approach to the study of subsurface space to a depth of a few meters on the basis of high-quality signal reconstructions is informative and cost-effective. A comparative analysis of this technique with existing foreign technologies based on the induction methods has revealed a number of significant advantages, such as noise reduction, high resolution and sensitivity.

At 2012 - was released first "AEMP-14" (EMS#20) with completely new electronic plates and cover.
Unique properties of the device:
- the ability to obtain information in the form of geoelectric maps and profiles of the apparent resistivity values in real time on Android or Windows mobile;
- applicability in high level of electromagnetic interference conditions;
- performance in conditions of extremely low ground resistance.

First compact profiler “Geovizer” was released in 2014, it implements the induction multi-frequency sounding method, and allows contactless measuring of the underground situation. As a result of measuring, it is possible to obtain the spatial level distribution of the secondary field signal from the ground till 3 meters depth. Three-frequency EM-I profiler “Geovizer” allows profiling on any set of 3 fixed frequencies in the 12.5 – 111 kHz range, including the measuring with global coordinates automatic associating.

Multi-electrode electrical resistivity & induced polarization imaging instruments

In 2009 the core staff of the company LLC "KB Electrometry" in cooperate with the Institute of Petroleum Geology and Geophysics A.A. Trofimuka SB RAS (IPGG SB RAS) developed the "SibER 48" - multi-electrode instrument, which was designed to perform electrical exploration using resistivity and induced polarization methods with the measuring modes of electrical profiling, vertical electrical sounding, and electrical tomography. There is a switch for electromechanical relays, a generator and a selective millivoltmeter in the case. For long profiles, the “roll-up” mode is implemented with the transfer of the first segment of the multi-electrode cable of the previous arrangement to the place of the second in the next one. SibER 48 has built-in software that allows you to:
- program switching to work with 2D tomography;
- ensure the safety of data during power failures;
- disconnect any electrodes;
- provide flexible control of equipment.

Subsequently in 2014 there was developed 16x channels and 64-electrode instrument for electrical resistivity & induced polarization imaging “SibER 64”. The core of the hardware is an integrated processor unit with Linux OS. Control of the unit organises by 10 inches touch screen, which allows operator to perform all operator work without using a personal computer. Synchronization with an external PC is carried out using a standard USB cable. The internal source generator of a bipolar pulses sequence has 200W power. There is also possibility of using an external generator 1KW+. Thanks to the high-performance processor, touch screen and advanced interface, the equipment layout allows interactively programming measurement protocols, viewing, monitoring and preliminary processing of the measured data.

In 2017, KB Electrometry presented last developments - the Geovizer induction profiler and 48-electrodes 15x measuring channels electrical resistivity & induced polarization imaging instruments SibER 48K12.

In 2019, KB Electrometry brought to the market a new model 64-electrodes 15x measuring channels electrical resistivity & induced polarization imaging instruments SibER 64K15 with the ability to synchronise with an external source VP-1000M.

In January 2020, the company introduced a new version of the Xeres control software, now in the 4th version the user sets the operating voltage, indeed the current. This eliminates the occurrence of emergency situations because of a high ground resistance difference on electrodes. The logging measurement functionality and a new diagnostic module for conducting operational tests of internal nodes of the system are also added.

/Users/Diman/Desktop/product_release.txt
Multi-array ground radio imaging system

The concept of a hardware-software complex for 3D radio imaging was approved in 2006. Since 2012, the development of the multi-array ground radio imaging system "GRT-XX" (GeoRadioTomograph) has been carried out jointly with a group of specialists from the Siberian Physical-Technical Institute (TSU), programmers and specialized engineers.
In 2015, the first prototype of a 16-channel chirp signal generator that work in the 500 MHz - 2000 MHz range was created, which allows multi-angle sounding with trace digitization at 256 samples.

In April 2017 the prototype of a 32-channel generator with pre-processing on board and data transmission via Fast Ethernet (100 Mbit/s) protocol was presented.

In March 2018, at the “Georadar-2018” conference, as part of a field demonstration, a working set of GRT-23 equipment (24 antenna elements; scanning width ~ 2m) installed at the road laboratory was shown. Thanks to the integrated module based on FPGU controllers - the data processing speed was significantly increased - data collection and processing from the entire line at a measurement density of 10 cm was carried out at the speed up to 45 km/h (up to 80 km/h if using 6 measurement channels) with digitization of a trace signal on 512 samples.

In August 2018, a new version of the device was released, with an improved protocol for transmitting data via Gigabit Ethernet, providing digitization of the trace signal at 1024 samples and data collection at speeds up to 80+ km/h with a measurement density of 5 cm when using 32 antenna elements.

In July 2019, a new version of the hardware generator firmware was released, which additionally provided switching options for the measurement mode using the common midpoint method (CMP).

In August 2019, the integration of the .trz format into the GeoReader software package was completed. The results of the data processing obtained during the GPRs testing at the GC Avtodor test field in the summer of 2019, organised by the RosdorNII, demonstrate the high efficiency of the operation of software algorithms for calculating the depth section according to GOST R 58349-2019.

In January 2020, it was possible to significantly improve the quality of data due to the refinement of the antenna modules, as well as the introduction of the primary calibration technique and compensation of the hardware function.

In 2020, the company announces a new model of high frequency radio imaging system - GRT-81, designed to get three-dimensional radio images with a resolution of 15x15 mm according to plan and <2 mm in depth, in particular, to measure the thickness of the upper layer of the road surface with high accuracy, as well as to build the function of changing the relative density of the investigated environment.